US009342282B2

a2z United States Patent (10) Patent No.: US 9,342,282 B2
Son et al. (45) Date of Patent: May 17, 2016
(54) METHOD AND APPARATUS FOR DYNAMIC (56) References Cited
DATA CONFIGURATION
U.S. PATENT DOCUMENTS
(71) Applicant: Samsung Electroni.cs Co., Ltd., 6,862,729 Bl1* 3/2005 Kuchetal ..cccocoorn.... 717/158
Suwon-si, Gyeonggi-do (KR) 7,143,404 B2* 11/2006 Haghighat et al. .. 717/159
8,122,442 B2* 2/2012 Lin ..cocevvrenenene . T17/159
. : el . 8,145,625 B2* 3/2012 McCool et al ... 707/715
(72) Inventors' Sung Jln Son’ Yongl.Il-Sl (I<.R)5 Sang 8’910’135 B2 * 12/2014 La.l """""""""" . 717/159
Oak Woo, Anyang-si (KR); Seok Yoon 2000/0018993 AL* 1/2009 McCool et al. ..o 707/2
Jung, Seoul (KR) 2009/0199169 A1* 82009 Linl oovvrirvvrrirrcenreann, 717/159
2010/0205580 Al 8/2010 McAllister et al.
s . . 2010/0241824 Al 9/2010 Carlson et al.
(73) Assignee: Samsung Electronics Co., Ltd., 2011/0191567 Al 82011 Lancaster et al.
Suwon-si (KR) 2012/0110561 Al 52012 Lai
2013/0104113 Al* 4/2013 Guptaetal. 717/169
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 43 days.
KR 10-2005-0030540 3/2005
| KR 10-2007-0032723 3/2007
(21) Appl. No.: 13/962,364 (Continued)
(22) Filed: Aug. 8, 2013 OTHER PUBLICATIONS
Culler, D., et al., “Parallel Programming in Split-C,” Proceedings of
(65) Prior Publication Data Supercomputing *93 [online], 1993 [retrieved Nov. 17, 2014],
Retrieved from Internet: <URL: http://ieecexplore.ieee.org/xpls/abs__
US 2014/0052967 A1 Feb. 20, 2014 all jsp?arnumber=1263470&tag=1>, pp. 262-273 *
(30) Foreign Application Priority Data (Continued)
Aug. 16,2012 (KR) oo 10-2012-0089561 Lrimary Examiner —Todd Aguilera
(74) Attorney, Agent, or Firm — NSIP Law
(51) Int.Cl (57 ABSTRACT
GO6F 9/45 (2006.01) A method and apparatus for configuring dynamic data are
GO6F 9/445 (2006.01) provided. A compilation apparatus may select a data format
(52) U.S.CL showing an optimum performance when a binary code is
CPC .ooovvran. GOGF 8/443 (2013.01); GO6F 9/445 executed, from among a plurality of data formats supported
(2013.01); GO6F 9/44536 (2013.01); GO6F by an execution apparatus used to execute a binary code, and
9/44557 (2013.01); GO6F 8/441 (2013.01) may generate a binary code that uses the selected data format.
(58) Field of Classification Search The execution apparatus may execute a binary code provided

None
See application file for complete search history.

Compilation apparatus

by the compilation apparatus.
18 Claims, 10 Drawing Sheets

Execution apparatus

format 1255

Generato binary code 1230
Generate information 1240
representing data format
Binary code 1250
Information representing data
1260~
1262~

1264~

1266~

Execute
binary code

Process loaded data

Store processed data

US 9,342,282 B2
Page 2

(56) References Cited

FOREIGN PATENT DOCUMENTS

KR 10-2007-0037568 4/2007
KR 10-2008-0087123 9/2008
KR 10-2009-0095606 9/2009
KR 10-2011-0019775 2/2011
KR 10-2011-0079495 7/2011
KR 10-2011-0090915 8/2011
KR 10-2012-0025612 3/2012
OTHER PUBLICATIONS

Strzodka, R., “Data Layout Optimization for Multi-Valued Contain-
ers in OpenCL”, Elsevier [online], 2011 [retrieved Jun. 29, 2015],

Retrieved from Internet: <URL: http://www.sciencedirect.com/sci-
ence/article/pii/S0743731511002115>, pp. 1073-1082 *

Taylor, R., et al., “A Micro-benchmark Suite for AMD GPUs”, 39"
Int’l Conf. on Parallel Processing Workshops [online], 2010
[retrieved Jan. 4, 2016], Retrieved from Internet: <URL: http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=5599097 &tag=1>,
pp. 387-396.*

Extended Furopean Search Report issued Jan. 7, 2014 in European
Patent Application No. 13180661 4.

Ismail Kadayif et al., “Quasidynamic Layout Optimizations for
Improving Data Locality”, IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 15, No. 11, Nov. 2004, pp. 996-1011.

Ulrich Kremer, “Automatic Data Layout for Distributed Memory
Machines”, CRPC-TR95559-8S, Oct. 1995, 142 pages.

* cited by examiner

U.S. Patent May 17, 2016 Sheet 1 of 10 US 9,342,282 B2

F1G.1

100
110 120

Source code

\J

NI

Information representing data format

w NN

Compilation Execution
apparatus apparatus

U.S. Patent May 17, 2016 Sheet 2 of 10 US 9,342,282 B2

FIG.2
A 110
A 210 /\/230
Processor
~ 220 Transceiver
Storage unit
FIG.3
120

Processor —TL—310

Transceiver 1L —-320

US 9,342,282 B2

Sheet 3 of 10

May 17, 2016

U.S. Patent

FIG.4

7.

7

7

7

7

)

%

2

w2

z2

=TE

= y4=

x2

xé_li

US 9,342,282 B2

Sheet 4 of 10

May 17, 2016

U.S. Patent

FI1G.5

N

N

N

US 9,342,282 B2

Sheet 5 of 10

May 17, 2016

U.S. Patent

FIG.6

Processing using AoS scheme

US 9,342,282 B2

Sheet 6 of 10

May 17, 2016

U.S. Patent

FI1G.7

Processing using SoA scheme

X I X[XX | XXX | X|[X]|X]|X]|X

VA V4 Z z V4 Z Z V4 VA V4 Z Z

U.S. Patent May 17, 2016 Sheet 7 of 10 US 9,342,282 B2
FIG.8
Source code
210
yas
Analyzers
Y /‘/ 810 L /\/ 820 1] /\/ 830
First analyzer Second analyzer Third analyzer
Binary codes
| Y ¥ 840
Comparator
Information
bi?li;cf;gle representing
data format
\ \

U.S. Patent May 17, 2016 Sheet 8 of 10 US 9,342,282 B2

FIG.9
varying vec2 oTexCoord;
varying vec3 oCol;
uniform sampler2D TexSampler;
void main()
{
vec3 color = oCol*texture2D(TexSampler, oTexCoord).xyz;
gl FragColor = vec4(color, 1.0f);
}
FIG.10
{
int condition;
if(condition)
func A(Q);
else
func_B();
}

U.S. Patent May 17, 2016 Sheet 9 of 10 US 9,342,282 B2

FI1G.11

Binary code
(o)
% %
%
Information 1120
representing Processor
data format
310

»| Data L\ 1139
storage unit

U.S. Patent May 17, 2016 Sheet 10 of 10 US 9,342,282 B2

FIG.12
Compilation apparatus Execution apparatus
= = 110
Read source code 1210
Select data 1220
format

Predict performance [\—-1222

|
Determine data format {\—1224

Generate binary code [~—1230

Generate information
representing data format 1240

Binary code 1250

Information representing data format 1255

-

1260 —~ = Execute
binary code

/

1262 ~J7 Load data

I
1264 ~/ T Process loaded data

I
1266 ~s T Store processed data

US 9,342,282 B2

1
METHOD AND APPARATUS FOR DYNAMIC
DATA CONFIGURATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the priority benefit of Korean
Patent Application No. 10-2012-0089561, filed on Aug. 16,
2012, in the Korean Intellectual Property Office, the disclo-
sure of which is incorporated herein by reference.

BACKGROUND

1. Field

Example embodiments of the following description relate
to a method and apparatus for configuring dynamic data, and
more particularly, to a method and apparatus for configuring
dynamic data used in a single-instruction, multiple-data
(SIMD) processor.

2. Description of the Related Art

A single-instruction, multiple-data (SIMD) processor is
used to enhance processing power by simultaneously pro-
cessing multiple data using a single instruction.

A SIMD scheme is used to enhance performances of vari-
ous processors, for example a central processing unit (CPU),
a graphics processing unit (GPU), and the like. A CPU and a
GPU may be examples of a SIMD processor, which have
adopted a SIMD scheme. CPU, GPU, and the like are utilized
in server, laptop, desktop, and mobile computing devices
such as tablets and phones.

To process data in a SIMD processor, multiple data to be
processed by an instruction is required to be configured. The
SIMD processor may process the multiple data using a single
instruction, to enhance a performance of a computer system.

Based on a characteristic of the SIMD processor, a data
format suitable to process data may be supported.

SUMMARY

In an aspect of one or more embodiments, there is provided
a method by which a compilation apparatus generates a
binary code by compiling a source code, including selecting
a data format suitable for a processor, from among a plurality
of'data formats, the processor being used to execute the binary
code, and generating the binary code used to process data
using the selected data format.

The method may further include generating information
representing the selected data format.

The processor may be a single-instruction, multiple-data
(SIMD) processor.

Each of the plurality of data formats may be used by the
processor to parallel process data using a SIMD scheme.

The plurality of data formats may include at least one of an
array of structures (AoS) format and a structure of arrays
(SoA) format.

The method may further include executing the binary code,
using the processor.

The executing may include loading data based on the
selected data format, processing the loaded data by applying
an operation indicated by an instruction to the loaded data,
and storing the processed data based on the selected data
format.

The method may further include generating information
representing the selected data format, and executing the
binary code based on the information, using the processor.

The selecting may include predicting a performance of
each of the plurality of data formats, and selecting, as a data

10

20

25

30

35

40

45

50

55

60

65

2

format suitable for the processor, a data format providing a
best performance, from among the plurality of data formats,
based on the predicted performance.

In an aspect of one or more embodiments, there is provided
a method by which an execution apparatus executes a binary
code, including receiving the binary code, and information
representing a selected data format, and executing the binary
code using a processor, wherein the data format is selected
from among a plurality of data formats supported by the
processor.

The executing may include loading data based on the
selected data format, processing the loaded data by applying
an operation indicated by an instruction to the loaded data,
and storing the processed data based on the selected data
format.

In an aspect of one or more embodiments, there is provided
a computer system including a compilation apparatus to
select a data format suitable for a processor, from among a
plurality of data formats, and to generate a binary code using
the selected data format, the processor being used to execute
the binary code, and the binary code being used to process
data, and an execution apparatus to execute the binary code,
using the processor.

The compilation apparatus may generate information rep-
resenting the selected data format.

The execution apparatus may execute the binary code
based on the information, using the processor.

In an aspect of one or more embodiments, there is provided
a compilation apparatus including a storage unit to store a
source code, and a processor to read the source code from the
storage unit, to select a data format suitable for an execution
apparatus from among a plurality of data formats, and to
generate a binary code, the execution apparatus being used to
execute the binary code, and the binary code being used to
process data using the selected data format.

The processor may generate information representing the
selected data format.

The compilation apparatus may further include a trans-
ceiver to transmit, to the execution apparatus, the binary code
and the information representing the selected data format.

A processor of the execution apparatus may be a SIMD
processor.

Each of the plurality of data formats may be used by the
processor of the execution apparatus to parallel process data
using a SIMD scheme.

The plurality of data formats may include at least one of an
AoS format and a SoA format.

In an aspect of one or more embodiments, there is provided
an execution apparatus including a transceiver to receive a
binary code and information representing a data format, and
a processor to execute the binary code, wherein the data
format is selected from among a plurality of data formats
supported by the processor.

The processor may load data based on the selected data
format, may process the loaded data by applying an operation
indicated by an instruction to the loaded data, and may store
the processed data based on the selected data format.

According to an aspect of one or more embodiments, there
is provided at least one non-transitory computer readable
medium storing computer readable instructions to implement
methods of one or more embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following

US 9,342,282 B2

3

description of example embodiments, taken in conjunction
with the accompanying drawings of which:

FIG. 1 illustrates a diagram of a configuration of a com-
puter system according to example embodiments;

FIG. 2 illustrates a block diagram of a compilation appa-
ratus of the computer system of FIG. 1;

FIG. 3 illustrates a block diagram of an execution appara-
tus of the computer system of FIG. 1;

FIG. 4 illustrates a diagram of an array of structures (AoS)
format according to example embodiments;

FIG. 5 illustrates a diagram of a structure of arrays (SoA)
format according to example embodiments;

FIG. 6 illustrates a diagram of a performance of when
processing using an AoS format is performed according to
example embodiments;

FIG. 7 illustrates a diagram of a performance of when
processing using a SoA format is performed according to
example embodiments;

FIG. 8 illustrates a block diagram of a processor of the
compilation apparatus of FIG. 2;

FIG. 9 illustrates a diagram of a source code used to process
graphics according to example embodiments;

FIG. 10 illustrates a diagram of a source code including a
conditional branch statement according to example embodi-
ments;

FIG. 11 illustrates a diagram of a processor of the execution
apparatus of FIG. 3; and

FIG. 12 illustrates a flowchart of a binary code processing
method according to example embodiments.

DETAILED DESCRIPTION

Reference will now be made in detail to example embodi-
ments, examples of which are illustrated in the accompanying
drawings, wherein like reference numerals refer to the like
elements throughout. Example embodiments are described
below to explain the present disclosure by referring to the
figures.

Hereinafter, description of a pixel may be applied to a
vertex. Additionally, description of a vertex may be applied to
a pixel.

FIG. 1 illustrates a diagram of a configuration of a com-
puter system 100 according to example embodiments.

The computer system 100 of FIG. 1 may analyze, in
advance, a characteristic of an algorithm in a source code
during compiling of the source code. The computer system
100 may select an efficient data format for parallel process-
ing, based on a result of this analysis. Processing power of the
computer system 100 may be maximized by a parallel pro-
cessing scheme (parallel processing configuration) using the
selected data format. In this instance, the parallel processing
scheme may include, for example, parallel processing of a
single-instruction, multiple-data (SIMD) scheme (single-in-
struction, multiple-data (SIMD) configuration). Examples of
a characteristic of an algorithm may include an instruction for
which SIMD processing can be applied, a condition of the
execution of the instruction, and an instruction or a block of
instructions of which executions depends on a conditional
status. Accordingly, a branch is a characteristic of an algo-
rithm.

As shown in FIG. 1, the computer system 100 may include
a compilation apparatus 110 and an execution apparatus 120.

The compilation apparatus 110 may generate a binary code
by compiling a source code. For example, the compilation
apparatus 110 may be a computer to generate a binary code
based on a source code by executing a compiler.

10

20

30

40

45

4

The compilation apparatus 110 may select, from among a
plurality of data formats, a data format suitable for a proces-
sor or the execution apparatus 120 that may be used to execute
abinary code. The compilation apparatus 110 may generate a
binary code used to process data using the selected data
format, by compiling a source code, and may generate infor-
mation representing the selected data format. In this instance,
a processor of the execution apparatus 120 may be used to
execute the binary code. The processor of the execution appa-
ratus 120 may include, for example, a central processing unit
(CPU) or a graphics processing unit (GPU), which may
employ an SIMD scheme (configuration).

The compilation apparatus 110 may provide the execution
apparatus 120 with the generated binary code and the gener-
ated information.

The execution apparatus 120 may execute the binary code.
The execution apparatus 120 may be, for example, a com-
puter to execute a binary code. The execution apparatus 120
may execute the binary code, based on the information rep-
resenting the selected data format, using the processor of the
execution apparatus 120.

The compilation apparatus 110 and the execution appara-
tus 120 may be physically configured as a single apparatus.

FIG. 2 illustrates a block diagram of the compilation appa-
ratus 110 of FIG. 1.

In FIG. 2, the compilation apparatus 110 may include a
processor 210, a storage unit 220, and a transceiver 230.

The storage unit 220 may store a source code and a binary
code.

The processor 210 may generate a binary code and infor-
mation representing a data format, by compiling a source
code. The processor 210 may read the source code from the
storage unit 220. The processor 210 may store the generated
binary code and the generated information in the storage unit
220.

The processor 210 may determine a most efficient data
format corresponding to a source code input to the processor
210. The processor 210 may select, from among a plurality of
data formats, a data format suitable for a processor or the
execution apparatus 120 that may be used to execute the
binary code. The processor 210 may generate a binary code
used to process data using the selected data format, by com-
piling a source code, and may generate information represent-
ing the selected data format. In this instance, a processor of
the execution apparatus 120 may be used to execute the binary
code.

The transceiver 230 may transmit, to the execution appa-
ratus 120, the binary code and the information representing
the data format.

FIG. 3 illustrates a block diagram of the execution appara-
tus 120 of FIG. 1.

In FIG. 3, the execution apparatus 120 may include a
processor 310 and a transceiver 320.

The transceiver 320 may receive, from the compilation
apparatus 110, a code and information representing a data
format.

The processor 310 may include, for example, a CPU or a
GPU, which may employ a SIMD scheme (configuration).
The processor 310 may execute a binary code based on the
information representing the data format. CPU, GPU, and the
like are utilized in server, laptop, desktop, and mobile com-
puting devices such as tablets and phones.

Each of the plurality of data formats may correspond to a
way of combining data that is required to be processed by the
processor 310. Each of the plurality of data formats may be
used by the processor 310 to parallel process data using a
SIMD scheme (configuration).

US 9,342,282 B2

5

The plurality of data formats may include at least one of an
array of structures (AoS) format and a structure of arrays
(SoA) format. The AoS format may refer to a data formatused
in an AoS scheme (AoS configuration), and the SoA format
may refer to a data format used in a SoA scheme (SoA
configuration). The AoS format and the SoA format will be
further described below with reference to FIGS. 4 and 5,
respectively.

Additionally, the plurality of data formats used by the
processor 310 may further include a scalar format. The scalar
format may not employ a format for a SIMD architecture of
the processor 310. The format for the SIMD architecture may
include, for example, an AoS format, a SoA format, and the
like.

A scalar format may be selected by the processor 310 when
there is no benefit of the use of an SIMD data format including
the AoS format, the SoA format, and the like, or when the
additional cost (additional resources) including calculated
time or calculated power of the use of a SIMD format is
greater than the benefit of the use of the SIMD format. A
scalar format may be used because all data or program
instructions may not be suitable or beneficial for processing
using SIMD instructions.

Each of the plurality of data formats may be supported by
the processor 310. The processor 310 may be designed to
simultaneously or selectively process the AoS format, the
SoA format, and the like. Also, the processor 310 may be
designed to selectively process the scalar format when there is
no benefit to use an SIMD format including the AoS format,
the SoA format, and the like, or when the additional cost
(additional resources) including calculated time or calculated
power of the use of a SIMD format is greater than the benefit
of the use of the SIMD format.

Information representing a selected data format may
include one or more bits. For example, when the information
representing the selected data format has a binary value of
“00,” the scalar format may be determined to be selected.
When the information representing the selected data format
has a binary value of “01,” the AoS format may be determined
to be selected. Additionally, when the information represent-
ing the selected data format has a binary value of “10,” the
SoA format may be determined to be selected. Further, when
the information representing the selected data format has a
binary value of “11,” another SIMD format may be deter-
mined to be selected.

FIG. 4 illustrates a diagram of an AoS format according to
example embodiments.

An AoS scheme (AoS configuration) may be used in a
three-dimensional (3D) graphics field.

In the AoS scheme, a color or position of a graphic object
may be combined in a single structure, and the structure may
be simultaneously processed. In this instance, the graphic
object may be, for example, a pixel or vertex. Components of
the position may be, for example, an x-coordinate value, a
y-coordinate value, a z-coordinate value, and a w-coordinate
value. Components of the color may be, for example, red (R),
green (G), blue (B), and alpha (A).

InFIG. 4, each row may correspond to an executed instruc-
tion, and each column may represent data processed by the
processor 310 of the execution apparatus 120 based on an
instruction corresponding to each row. For example, when the
processor 310 processes 32-bit data at once using a SIMD
scheme, each of four rows may represent 8-bit data processed
by the SIMD scheme.

For example, in FIG. 4, ‘x1°, ‘y1°, ‘z1” and ‘w1’ in a first
row may represent an x-coordinate value, a y-coordinate
value, a z-coordinate value, and a w-coordinate value of a first

10

15

20

25

30

35

40

45

50

55

60

65

6

pixel processed by a first instruction, respectively. Similarly,
symbols of a second row, a third row, and a fourth row may
represent coordinate values of a second pixel, a third pixel,
and a fourth pixel processed by a second instruction, a third
instruction, and a fourth instruction, respectively.

When the AoS scheme is used, the processor 310 may
simultaneously process operations for each ofx, y, z, and w of
a single pixel, and may sequentially process operations for
each of a plurality of pixels. The AoS scheme has an advan-
tage of applying only one instruction to all (or many) ele-
ments (e.g. X, V, z, and w) of a pixel. When the AoS scheme is
used, the number of pixels associated with one SIMD instruc-
tion is less than the number of pixels associated with an
instruction when the SoA scheme is used.

The AoS scheme may have an advantage of naturally pro-
cessing data in 3D graphics. In the 3D graphics, the AoS
scheme may be used to naturally express a color and four
dimensional (4D) position of a pixel. However, the AoS
scheme may have a disadvantage of a low efficiency when all
components are not used in an operation of 3D graphics. For
example, when a single instruction is not simultaneously
applied to four components of a pixel in the AoS scheme, an
efficiency of the execution apparatus 120 may be reduced.
More specifically, in some applications, the w-coordinate
value in the AoS scheme may not be used, but a slot for the
w-value must be assigned because the SIMD scheme for
executing code in the AoS format is a SIMD configuration to
process x-value, y-value, z-value, and w-value at once. There-
fore, the w-value may be a dummy value in some applica-
tions, so that all components are not used in an operation of
3D graphics.

FIG. 5 illustrates a diagram of a SoA format according to
example embodiments.

A SoA scheme (SoA configuration) may be used in a 3D
graphics field.

In the SoA scheme, components of each of pixels or verti-
ces that are required to be processed by the processor 310 of
the execution apparatus 120 may be combined in a single
structure, and the structure may be simultaneously processed.
The components may be, for example, components of a posi-
tion, or components of a color. A position of a pixel may
include a component, for example, X, y, Z, or w. A color of a
pixel may include a component, for example, R, G, B, or A.

InFIG. 5, each row may correspond to an executed instruc-
tion, and each column may represent data processed by the
processor 310 based on an instruction corresponding to each
row. For example, when the processor 310 processes 32-bit
data at once using a SIMD scheme, each of four rows may
represent 8-bit data processed by the SIMD scheme.

For example, in FIG. 5, ‘x1°, ‘x2’, ‘x3” and ‘x4’ in a first
row may each represent an x-coordinate value of each of a
first pixel through a fourth pixel that are processed by a first
instruction. Additionally, ‘y1°, ‘y2’, ‘y3’and ‘y4’ in a second
row may each represent a y-coordinate value of each of a first
pixel through a fourth pixel that are processed by a second
instruction. In addition, ‘z1’, ‘z2’, z3” and ‘z4’ in a third row
may each represent a Z-coordinate value of each of a first pixel
through a fourth pixel that are processed by a third instruc-
tion. Furthermore, ‘w1’, ‘w2’, ‘w3’ and ‘w4’ in a fourth row
may each represent a w-coordinate value of each of a first
pixel through a fourth pixel that are processed by a fourth
instruction.

The SoA scheme may have an advantage of increasing an
efficiency of the execution apparatus 120 to a maximum level,
when the processor 310 executes identical instructions on a
plurality of pixels or a plurality of vertices. For example,
when the same operation is applied to a single array, the SoA

US 9,342,282 B2

7

scheme may be very efficient to perform the same operation
using parallel instructions. In this instance, the array may be
an array of pixels, and the like. For example, in applications
which do not include a w-value, no slot for the w-value must
be assigned. Instead, another group of x-values, group of
y-value, or group of z-values, may be processed in parallel
using the SoA scheme. However, when a branch occurs due to
a conditional statement in an execution code in the SoA
scheme, it may be difficult to control data processing, and a
performance of the execution apparatus 120 may be reduced.
For example, when an operation applied to a part of an array
is performed based on a condition in the SoA scheme, the
performance of the execution apparatus 120 may be reduced.

A performance of the AoS scheme and a performance of
the SoA scheme may be compared, as shown in FIGS. 6 and
7.

Referring to FIGS. 6 and 7, the processor 310 of the execu-
tion apparatus 120 may simultaneously process a maximum
of 16 pieces of data using a single instruction. FIGS. 6 and 7
illustrate an operation flow of when the AoS schemeis used to
process data, and an operation flow of when the SoA scheme
is used to process data, respectively.

A performance of when processing is performed using the
AoS scheme will be described with reference to FIG. 6.

When the AoS scheme is used, the processor 310 may
simultaneously process an x-coordinate value, a y-coordinate
value, a z-coordinate value, and a w-coordinate value of each
of four pixels. However, when an x-coordinate value, a y-co-
ordinate value, and a z-coordinate value of a pixel are actually
processed, as shown in FIG. 6, only 12 pieces of data among
16 pieces of data processed by an instruction may be valid.

In FIG. 6, the processor 310 may perform an operation of
an x-coordinate value, a y-coordinate value, and a z-coordi-
nate value of each of 12 pixels, through three stages, where
the first four pixels correspond to the first stage, the middle
four pixels correspond to the second stage, and the last four
pixels correspond to the third stage. In addition, in FIG. 6,
three different types of lines are shown. Each type of line in
FIG. 6 may represent targets of a single SIMD instruction. In
the example of FIG. 6, the same operation is applied to all
x-coordinates, the same operation to all y-coordinates, and
the same operation is applied all z-coordinate. However, the
operation applied to all x-coordinates may differ from the
operation applied to all y-coordinates, which may differ from
the operation applied to all z-coordinates. However, two or
more operations may be the same operation.

A performance of when processing is performed using the
SoA scheme will be described with reference to FIG. 7.

When the SoA scheme is used, the processor 310 may
simultaneously process x-coordinate values, y-coordinate
values, z-coordinate values, or w-coordinate values of a maxi-
mum of 16 pixels. However, when x-coordinate values, y-co-
ordinate values, and z-coordinate values of 12 pixels are
actually processed, as shown in FIG. 7, only 12 pieces of data
among 16 pieces of data processed by an instruction may be
valid.

In FIG. 7, the processor 310 may perform an operation of
x-coordinate values, y-coordinate values, and z-coordinate
values of 12 pixels, through three stages, where the first stage
is the execution of all x pixels, the second stage is the execu-
tion of all y pixels and the third stage is the execution of all z
pixels. In FIG. 7, three different types of lines are shown.
Each type of line in FIG. 6 may represent targets of a single
SIMD instruction. In the example of FIG. 7, the same opera-
tion is applied to all x-coordinates, the same operation to all
y-coordinates, and the same operation is applied all z-coor-
dinate. However, the operation applied to all x-coordinates

20

25

40

45

55

8

may differ from the operation applied to all y-coordinates,
which may differ from the operation applied to all z-coordi-
nates. However, two or more operations may be the same
operation.

FIG. 8 illustrates a block diagram of the processor 210 of
the compilation apparatus 110.

The processor 210 may distinguish a data format enabling
the execution apparatus 120 based on a SIMD processor to
efficiently use a SIMD scheme, from other data formats.

In FIG. 8, the processor 210 may include a plurality of
analyzers, and a comparator 840. The plurality of analyzers
may include, for example a first analyzer 810, a second ana-
lyzer 820 and a third analyzer 830. However, embodiments
are not limited to three analyzers and additional analyzers
may be included in processor 210.

The plurality of analyzers may dynamically predict perfor-
mances of a plurality of data formats, respectively. For
example, when a binary code that processes data using a data
format is executed by the execution apparatus 120, a perfor-
mance of the data format may be a performance of the pro-
cessor 210, or a performance of the binary code.

For example, the first analyzer 810 may be a scalar ana-
lyzer. The first analyzer 810 may analyze a performance of the
execution apparatus 120 by predicting processing perfor-
mance (processing efficiency) for processing a binary code
using a scalar scheme, which may be executed by the execu-
tion apparatus 120. The second analyzer 820 may be, for
example, an AoS analyzer. The second analyzer 820 may
analyze a performance of the execution apparatus 120 by
predicting processing performance (processing efficiency)
for processing a binary code using an AoS scheme, which
may be executed by the execution apparatus 120. Addition-
ally, the third analyzer 830 may be, for example, a SoA
analyzer. The third analyzer 830 may analyze a performance
of the execution apparatus 120 by predicting processing per-
formance (processing efficiency) for processing a binary code
using a SoA scheme, which may be executed by the execution
apparatus 120.

The plurality of analyzers may generate binary codes for
each data format, using a source code. The plurality of ana-
lyzers may analyze and predict a performance of the execu-
tion apparatus unit using the generated binary codes.

To analyze and predict the performance, an analysis
scheme of a compiling operation may be applied to each of
the binary codes. Specifically, each of the plurality of analyz-
ers may apply the analysis scheme of the compiling operation
to a binary code generated by each of the plurality of analyz-
ers using one of a plurality of data formats, and may analyze
or predict a performance of the generated binary code. The
analysis scheme of the compiling operation may include at
least one of 1) an instruction utilization, and 2) an additional
cost (additional resources) incurred by a conditional branch.
For example, the plurality of analyzers may predict the per-
formance, based on an utilization of typically used instruc-
tions, and based on the additional cost incurred by the condi-
tional branch. An additional cost may be addition calculated
time or additional calculated power. Prediction of a perfor-
mance will be further described with reference to FIGS. 9 and
10.

The comparator 840 may select a data format providing a
best performance or optimum performance, as a data format
suitable for the execution apparatus 120 or the processor 310
that may be used to execute a binary code, from among the
plurality of data formats, based on the performances of the
plurality of data formats analyzed or predicted by the plural-
ity of analyzers.

US 9,342,282 B2

9

The plurality of data formats may provide the comparator
840 with the binary codes. The comparator 840 may select a
binary code corresponding to the selected data format among
the binary codes. The comparator may output the selected
binary code.

Alternatively, a user of the compilation apparatus 110,
instead of the plurality of analyzers and/or the comparator
840, may select a single data format suitable for the execution
apparatus 120 or the processor 310 that may be used to
execute a binary code, from among the plurality of data for-
mats. The processor 210 may generate a binary code that is
used to process data using the data format selected by the user,
and may generate information representing the selected data
format. In this instance, the user may be, for example, a
programmer of a source code.

The plurality of analyzers and the comparator 840 may
each represent a function, a library, a service, a process, a
thread, or a module that is performed by the processor 210.

FIG. 9 illustrates a diagram of a source code used to process
graphics according to example embodiments.

When the source code of FIG. 9 is compiled and a binary
code is generated, the comparator 840 of FIG. 8 may use an
instruction utilization to predict a performance.

The instruction utilization may refer to an utilization of
resources used for each component.

Similar to a pixel shader that is frequently used in a GPU,
only components corresponding to 3D among components
representing 4D may be mainly used. When the AoS scheme
is used, only 75% of available resources may be used, as
shown in FIG. 6. Conversely, when the SoA scheme is used,
all available resources may be used. Accordingly, the source
code of FIG. 9 may be more efficiently processed, using the
SoA scheme.

FIG. 10 illustrates a diagram of a source code including a
conditional branch statement according to example embodi-
ments.

When the source code of FIG. 10 is compiled and a binary
code is generated, the comparator 840 of FIG. 8 may use an
additional cost incurred by a conditional branch in the source
code to predict a performance.

The conditional branch statement may be one of most
difficult problems in a scheme used for parallel processing.
Whether a predetermined instruction is executed based on a
given condition may be determined based on a run-time, and
it may be difficult to predict, in advance, whether the prede-
termined instruction is to be executed.

A large number of researches have been conducted for an
increase in performance through predicting whether an
instruction is to be executed. The comparator 840 may use a
variety of conventional research results to calculate the addi-
tional cost incurred by the conditional branch.

Hereinafter, an example calculating an additional cost for
the source code of FIG. 10 including a simple conditional
branch will be described.

When the AoS scheme is used, a function may be executed
only once by a branch. In this instance, a function “func_A”
or “func_B” may be executed.

When the SoA scheme is used, in the worst case, both the
functions “func_A” and “func_B” may be executed. An ana-
lyzer corresponding to the SoA scheme may analyze
resources required by each of functions. Based on a result of
the analyzing, the analyzer corresponding to the SoA scheme
may substitute a probability function suitable for each of an
instruction utilization when all the functions are executed and
an instruction utilization when only a single function is
executed, and may calculate the additional cost. In this
instance, the analyzer corresponding to the SoA scheme may

15

20

25

40

45

10

be, for example, an analyzer to predict a performance of a
binary code using the SoA format, among a plurality of ana-
lyzers.

The plurality of analyzers may each calculate an additional
cost incurred by a conditional branch of a binary code using a
corresponding data format. The comparator 840 may com-
pare additional costs of the plurality of data formats, and may
select a data format suitable for the processor 310 that is to
execute a binary code from among the plurality of data for-
mats.

FIG. 11 illustrates a diagram of the processor 310 of FIG.
3.

The processor 310 of the execution apparatus 120 may be,
for example, a processor of a dynamic SIMD architecture. In
FIG. 11, the processor 310 may include an instruction fetch
unit 1110, a data load unit 1120, and a data storage unit 1130.
A binary code may be provided to the instruction fetch unit
1110, and information representing a selected data format
may be provided to the data load unit 1120 and the data
storage unit 1130.

The processor 310 may be configured by adding, to an
existing SIMD processor, a function of dynamically control-
ling loading and storing of data based on the selected data
format. The dynamic control may be performed by converting
aload of an instruction level and/or a format of storage, based
on a processor. Additionally, the dynamic control may be
performed by converting and storing a format in a connected
hardware part interface or a function interface part.

The processor 310 may process an instruction with respect
to an arithmetic operation, using the same scheme, regardless
of the selected data format. In this instance, the arithmetic
operation may include, for example, “addition”, “multiplica-
tion”, and the like.

The processor 310 may provide a processing scheme
matched to the selected data format, in association with a load
operation and a storage operation. As shown in FIGS. 4 and 5,
a relationship between the AoS format and the SoA format
may correspond to transformation of a transposed matrix. In
other words, a load instruction and a storage instruction may
be designed to enable transposition. The processor 310 may
support dynamic preparation of data required for an opera-
tion, based on the selected data format. Additionally, the
processor 310 may convert an input format and a result format
of data that is to be processed based on a characteristic of an
algorithm to be processed. In an example, when the processor
310 is a CPU, an input and/or output to be performed in the
processor 310 may not be determined. When an input and/or
output is not determined, a format may be converted in a load
and/or storage instruction level, an operation may be per-
formed based on a data format. In another example, when the
processor 310 is a GPU, an input and/or output to be per-
formed in the processor 310 may be determined. When an
input and/or output is determined, the processor 310 may
convert a data format of input data, before a shader processes
the input data, and may prepare data to be processed. Addi-
tionally, the processor 310 may process an internal arithmetic
operation, by using an existing instruction without any
change.

The instruction fetch unit 1110 may fetch an instruction
from a binary code.

The dataload unit 1120 may load data based on the selected
data format. For example, loading of data may refer to placing
data into an operand part of a register of the processor 310.
The register may include a plurality of operand parts. The
register may be, for example, an accumulator. The operand
part may include bits.

US 9,342,282 B2

11

When the data is loaded, the processor 310 may process the
loaded data, by applying an operation indicated by the fetched
instruction to the loaded data. For example, the processor 310
may apply an operation indicated by the fetched instruction to
the loaded data, and may store the data to which the operation
is applied, that is, updated data in the register or an accumu-
lator. The register or the accumulator in which the updated
data is stored may be identical to or different from a register
or an accumulator in which data is loaded.

The data storage unit 1130 may store the processed data
based on the selected data format. The storing of the pro-
cessed data may indicate storing, in a memory, data in a
register or an accumulator.

FIG. 12 illustrates a flowchart of a binary code processing
method according to example embodiments.

Referring to FIG. 12, in operation 1210, the processor 210
of'the compilation apparatus 110 may read a source code from
the storage unit 220 of the compilation apparatus 110.

In operation 1220, the processor 210 may select, from
among a plurality of data formats, a data format suitable for
the processor 310 of the execution apparatus 120 that may be
used to execute a binary code. Operation 1220 may include
operations 1222 and 1224.

In operation 1222, the plurality of analyzers of the proces-
sor 210 may predict performances of the plurality of data
formats, respectively.

In operation 1224, the comparator 840 of the processor 210
may determine a data format providing a best performance as
a data format suitable for the processor 310 that may be used
to execute a binary code, from among the plurality of data
formats, based on the predicted performances of the plurality
of data formats.

Each of the plurality of data formats may be used by the
processor 310 to parallel process data using a SIMD scheme.
However, if there is no benefit to using a data format used in
a SIMD scheme, then a scalar format may be used to process
the data. The transceiver 320 of the execution apparatus 120
may transmit information representing a plurality of data
formats that may be processed by the processor 310 to the
transceiver 230 of the compilation apparatus 110, although
not shown in FIG. 12.

In operation 1230, the processor 210 may generate a binary
code used to process data using the selected data format.

In operation 1240, the processor 210 may generate infor-
mation representing the selected data format.

In operation 1250, the transceiver 230 may transmit the
binary code to the transceiver 320.

In operation 1255, the transceiver 230 may transmit the
information representing the selected data format to the trans-
ceiver 320. Operations 1250 and 1255 may be performed
simultaneously.

In operation 1260, the processor 310 may execute the
binary code. Operation 1260 may include operations 1262,
1264 and 1266.

In operation 1262, the data load unit 1120 of the execution
apparatus 120 may load data based on the selected data for-
mat.

In operation 1264, the processor 310 may process the
loaded data by applying an operation indicated by an instruc-
tion to the loaded data.

In operation 1266, the data storage unit 1130 of the execu-
tion apparatus 120 may store the processed data based on the
selected data format.

At least one of the above-described operations 1210
through 1266 may be performed in a different order from that
shown in FIG. 12, or may be performed in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

12

Example embodiments may be applied to an apparatus and
system for performing an operation based on a SIMD proces-
sor, for example, a rendering system, such as an open graphics
library (OpenGL), OpenGLIES, and the like, and a parallel
computing system, such as an open computing language
(OpenCL), a compute unified device architecture (CUDA),
and the like.

According to example embodiments, a job associated with
a data format may be automatically processed by a compila-
tion apparatus, and thus it is possible to develop a develop-
ment environment convenient to a programmer, and possible
to enhance an efficiency of a processor of an execution appa-
ratus.

Additionally, according to example embodiments, it is pos-
sibleto convert an internal data format of a standard language,
even when a data format of the standard language may not be
converted by a programmer, such as an OpenGL, an
OpenGLIES, and the like. Thus, it is possible to enhance an
efficiency of a processor of an execution apparatus.

Furthermore, when the efficiency of the processor is
enhanced, a processing time may be shortened, and an
amount of power to be used may also be reduced.

The methods according to example embodiments may be
recorded in non-transitory computer-readable media includ-
ing program (computer readable) instructions to implement
various operations embodied by a computing device such as a
computer. The computing device may have one or more pro-
cessors. The media may also include, alone or in combination
with the program instructions, data files, data structures, and
the like. The program instructions recorded on the media may
be those specially designed and constructed for the purposes
of the example embodiments, or they may be of the kind
well-known and available to those having skill in the com-
puter software arts. Examples of non-transitory computer-
readable media include magnetic media such as hard disks,
floppy disks, and magnetic tape; optical media such as CD
ROM disks and DVDs; magneto-optical media such as opti-
cal discs; and hardware devices that are specially configured
to store and perform program instructions, such as read-only
memory (ROM), random access memory (RAM), flash
memory, and the like. Examples of program instructions
include both machine code, such as produced by a compiler,
and files containing higher level code that may be executed by
the computer using an interpreter. The non-transitory com-
puter-readable media may also be a distributed network, so
that the program instructions are stored and executed in a
distributed fashion. The program instructions may be
executed by one or more processors or processing devices.
The computer-readable media may also be embodied in at
least one application specific integrated circuit (ASIC) or
Field Programmable Gate Array (FPGA). The described
hardware devices may be configured to act as one or more
software modules in order to perform the operations of the
above-described example embodiments, or vice versa.

Although example embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these example embodiments
without departing from the principles and spirit of the disclo-
sure, the scope of which is defined in the claims and their
equivalents.

What is claimed is:

1. A method by which a compilation apparatus generates a
binary code by compiling a source code, the method compris-
ing:

selecting a data format based on predicted processing per-

formance for a processor, from among a plurality of data

US 9,342,282 B2

13

formats comprising an array of structures (AoS) format,
a structure of arrays (SoA) format, and a scalar format;
and

transmitting the binary code to an execution apparatus

based on the selected data format,

wherein the processor is used to execute the binary code

and comprises a single-instruction, multiple-data

(SIMD) processor,

wherein the selecting comprises:

predicting a performance of each of the plurality of data
formats by generating binary codes for the each of the
plurality of data formats based on the source code and
analyzing the generated binary codes for the each of
the plurality of data formats based on an analysis
scheme of a compiling operation; and

selecting a data format providing a best performance,
from among the plurality of data formats, based on the
predicted performance of each data format, whereby
the scalar format is selected when no performance
benefit exists to selecting array of structures (AoS)
format or structure of arrays (SoA) format.

2. The method of claim 1, wherein each of the plurality of
data formats is used by the processor to parallel process data
using a SIMD scheme.

3. The method of claim 1, further comprising:

executing the binary code for the selected data format,

using the processor.

4. The method of claim 3, wherein the executing com-
prises:

loading data based on the selected data format;

processing the loaded data by applying an operation indi-

cated by an instruction to the loaded data; and

storing the processed data based on the selected data for-

mat.

5. A non-transitory computer readable recording medium
storing a program to control a computer to implement the
method of claim 1.

6. The method of claim 1, further comprising:

generating information representing the selected data for-

mat,

wherein the transmitting further transmits the generated

information to an execution apparatus.

7. The method of claim 1, further comprising:

generating information representing the selected data for-

mat; and

executing the binary code for the selected data format

based on the generated information, using the processor.

8. A method by which an execution apparatus executes a
binary code, the method comprising:

receiving the binary code, and information representing a

selected data format based on predicted processing per-
formance; and

executing the binary code using a processor;

wherein the data format having the best predicted process-

ing performance is selected from among a plurality of
data formats comprising an array of structures (AoS)
format, a structure of arrays (SoA) format, and scalar
format, the plurality of data formats supported by the
processor based on the predicted performance of each
data format,

wherein the processor comprises a single-instruction, mul-

tiple-data (SIMD) processor, and

wherein the data format having the best predicted process-

ing performance is selected by predicting a performance
of each of the plurality of data formats by generating
binary codes for the each of the plurality of data formats
based on source code and analyzing the generated binary

10

15

20

25

40

45

14

codes based on an analysis scheme of a compiling opera-
tion, and selecting a data format providing a best perfor-
mance, from among the plurality of data formats, based
on the predicted performance of each data format,
whereby the scalar format is selected when no perfor-
mance benefit exists to selecting array of structures
(AoS) format or structure of arrays (SoA) format.

9. The method of claim 8, wherein the executing com-
prises:

loading data based on the selected data format;

processing the loaded data by applying an operation indi-
cated by an instruction to the loaded data; and

storing the processed data based on the selected data for-
mat.

10. A non-transitory computer readable recording medium
storing a program to control a computer to implement the
method of claim 8.

11. A computer system, comprising:

a compilation apparatus, including a computer, configured
to select a data format based on predicted processing
performance for a processor, from among a plurality of
data formats comprising an array of structures (AoS)
format, and a structure of arrays (SoA) format, and sca-
lar format, and to transmit a binary code to an execution
apparatus based on the selected data format, the execu-
tion apparatus configured to execute the generated
binary code by using the processor,

wherein the processor comprises a single-instruction, mul-
tiple-data (SIMD) processor, and

wherein the compilation apparatus is configured to predict
aperformance of each of the plurality of data formats by
generating binary codes for the each of the plurality of
data formats based on source code and analyzing the
generated binary codes based on an analysis scheme ofa
compiling operation, and select a data format providing
a best performance, from among the plurality of data
formats, based on the predicted performance of each
data format, whereby the scalar format is selected when
no performance benefit exists to selecting array of struc-
tures (AoS) format or structure of arrays (SoA) format.

12. The computer system of claim 11, wherein:

the compilation apparatus is configured to generate infor-
mation representing the selected data format, and

the execution apparatus is configured to execute the binary
code for the selected data format based on the informa-
tion, using the processor.

13. A compilation apparatus, comprising:

a storage unit, including a non-transitory computer-read-
able medium, configured to store a source code; and

a processor configured to read the source code from the
storage unit, to select a data format based on predicted
processing performance for an execution apparatus from
among a plurality of data formats comprising an array of
structures (AoS) format, a structure of arrays (SoA)
format, and scalar format, and to transmit a binary code
to the execution apparatus based on the selected data
format, the execution apparatus being used to execute
the binary code, and the binary code being used to pro-
cess data using the selected data format,

wherein a processor of the execution apparatus comprises
a single-instruction, multiple-data (SIMD) processor,
and

wherein the processor configured to read the source code is
configured to predict a performance of each of the plu-
rality of data formats by generating binary codes for the
each of the plurality of data formats based on the source
code and analyzing the generated binary codes based on

US 9,342,282 B2

15

an analysis scheme of a compiling operation, and select
a data format providing a best performance, from among
the plurality of data formats, based on the predicted
performance of each data format, whereby the scalar
format is selected when no performance benefit exists to
selecting array of structures (AoS) format or structure of
arrays (SoA) format.

14. The compilation apparatus of claim 13, further com-
prising:

atransceiver configured to transmit, to the execution appa-

ratus, the binary code for the selected data format and
information representing the selected data format.

15. The compilation apparatus of claim 13, wherein

each of the plurality of data formats is used by the proces-

sor of the execution apparatus to parallel process data
using a SIMD scheme.

16. The compilation apparatus of claim 13, wherein the
processor configured to read the source code is configured to
generate information representing the selected data format.

17. An execution apparatus, comprising:

atransceiver configured to receive a binary code and infor-

mation representing a selected data format, which is
selected based on predicted processing performance;
and

10

15

20

16

a processor configured to execute the binary code and
comprising a single-instruction, multiple-data (SIMD)
processor;

wherein the selected data format is selected from among a
plurality of data formats supported by the processor, the
plurality of data formats comprising an array of struc-
tures (AoS) format, a structure of arrays (SoA) format,
and scalar format, and

wherein the selected data format is selected by predicting a
performance of each of the plurality of data formats by
generating binary codes for the each of the plurality of
data formats based on source code and analyzing the
generated binary codes based on an analysis scheme ofa
compiling operation, and selecting a data format provid-
ing a best performance, from among the plurality of data
formats, based on the predicted performance of each
data format, whereby the scalar format is selected when
no performance benefit exists to selecting array of struc-
tures (AoS) format or structure of arrays (SoA) format.

18. The execution apparatus of claim 17, wherein the pro-

cessor is configured to load data based on the selected data
format, process the loaded data by applying an operation
indicated by an instruction to the loaded data, and store the
processed data based on the selected data format.

#* #* #* #* #*

